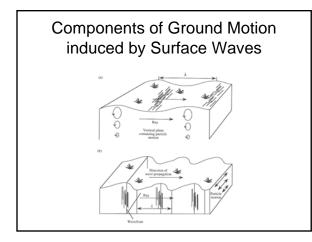
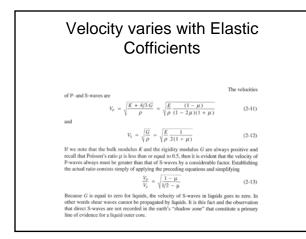


Ela	ast	ic C	Coe	ffi	cie	ent	ts
TABLE 2-1 Elas	tic Coeffic	ients and Se Young's	ismic Veloci Poisson's	ties for :	Selected	Commo	on Rocks
Rock Type	ρ	Modulus E	Ratio µ	(m/s)	(m/s)	Vp/Vs	Vs as %Vp
Shale (AZ)	2.67	0.120	0.040	2124	1470	1.44	69.22%
Siltstone (CO)	2.50	0.130	0.120	2319	1524	1.52	65.71%
Limestone (PA)	2.71	0.337	0.156	3633	2319	1.57	63.84%
Limestone (AZ)	2.44	0.170	0.180	2750	1718	1.60	62.47%
Quartzite (MT)	2.66	0.636	0.115	4965	3274	1.52	65.96%
Sandstone (WY)	2.28	0.140	0.060	2488	1702	1.46	68.42%
Slate (MA)	2.67	0.487	0.115	4336	2860	1.52	65.96%
Schist (MA)	2.70	0.544	0.181	4680	2921	1.60	62.41%
Schist (CO)	2.70	0.680	0.200	5290	3239	1.63	61.24%
Gneiss (MA)	2.64	0.255	0.146	3189	2053	1.55	64.38%
Marble (MD)	2.87	0.717	0.270	5587	3136	1.78	56.13%
Marble (VT)	2.71	0.343	0.141	3643	2355	1.55	64.65%
Granite (MA)	2.66	0.416	0.055	3967	2722	1.46	68.62%
Granite (MA)	2.65	0.354	0.096	3693	2469	1.50	66.85%
Gabbro (PA)	3.05	0.727	0.162	5043	3203	1.57	63.51%
Diabase (ME)	2.96	1.020	0.271	6569	3682	1.78	56.05%
Basalt (OR)	2.74	0.630	0.220	5124	3070	1.67	59.91%
Andesite (ID)	2.57	0.540	0.180	4776	2984	1.60	62.47%
Tuff (OR)	1.45	0.014	0.110	996	659	1.51	66.20%





P-Wave Velocities of Earth Matierals

Unconsolidated Materials		Consolidated M	Other		
Weathered layer	300-900	Granite	5000-6000	Water	1400-1600
Soil	250-600	Basalt	5400-6400	Air	331.5
Alluvium	500-2000	Metamorphic rocks	3500-7000		
Clay	1100-2500	Sandstone and shale	2000-4500		
Sand		Limestone	2000-6000		
Unsaturated	200-1000				
Saturated	800-2200				
Sand and gravel					
Unsaturated	400-500				
Saturated	500-1500				
Glacial till					
Unsaturated	400-1000				
Saturated	1700				
Compacted	1200-2100				

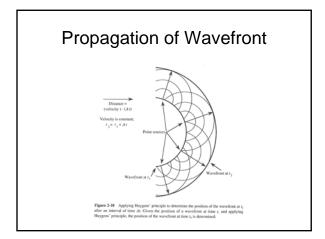
Rules of Thumb for P-wave Velocities

· Unsaturated sediments have lower values than saturated sediments.

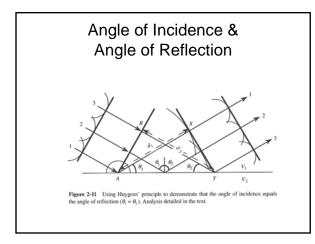
· Unconsolidated sediments have lower values than consolidated sediments.

· Velocities are very similar in saturated, unconsolidated sediments.

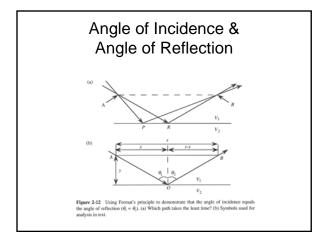
· Weathered rocks have lower values than similar rocks that are unweathered. · Fractured rocks have lower values than similar rocks that are unfractured.

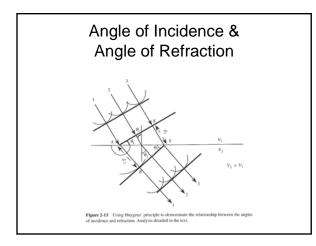

Rules of Thumb for S-wave and Surface Wave Velocities

In some field studies we also will want to estimate velocities for S-waves and Rayleigh waves. Love waves typically are not generated during exploration work, so we have little interest in estimating their velocities. General rules of thumb for such estimates are

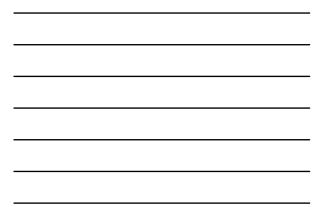

=	$0.6 V_{p}$	for crystalline rocks
=	$0.5 V_{p}$	for sedimentary rocks

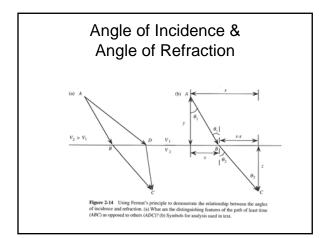
- $\begin{array}{lll} V_{S} &=& 0.6\,V_{P} \\ V_{S} &=& 0.5\,V_{P} \\ V_{S} &=& 0.4\,V_{P} \\ V_{R} &=& 0.9\,V_{S} \end{array}$
 - for soils and unconsolidated materials


(2-14)

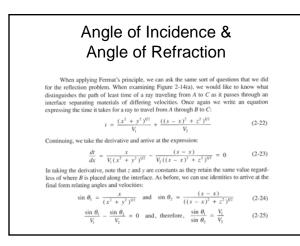


Angle of Incidence & Angle of Reflection	
By referring to Figure 2-12(b), we can state that the time (path distance/veloc ray to travel from A through some point O to B is	ity) for a
$t = \frac{(x^2 + y^2)^{1/2}}{V_1} + \frac{((x - x)^2 + y^2)^{1/2}}{V_1}$	(2-15)
In order to determine the minimum value of time <i>t</i> , we take the first derivative of tion and set it equal to zero:	the func-
$\frac{dt}{dx} = \frac{x}{V_1 (x^2 + y^2)^{1/2}} - \frac{(s - x)}{V_1 ((s - x)^2 + y^2)^{1/2}} = 0$	(2-16)
Using the relationships	
$\sin \theta_1 = \frac{x}{(x^2 + y^2)^{1/2}}$ and $\sin \theta_2 = \frac{(s - x)}{((s - x)^2 + y^2)^{1/2}}$	(2-17)
we see that	
$\frac{\sin \theta_1}{V_1} - \frac{\sin \theta_2}{V_1} = 0 \text{and, therefore,} \theta_1 = \theta_2$	(2-18)
Thus, the path for which the time of travel is least is the one for which the angle dence equals the angle of reflection.	e of inci-
Using the relationships $\sin \theta_1 = \frac{x}{(x^2 + y^2)^{V^2}} \text{ and } \sin \theta_2 = \frac{(x - x)}{((x - x)^2 + y^2)^{V^2}}$ we see that $\frac{\sin \theta_1}{V_1} - \frac{\sin \theta_2}{V_1} = 0 \text{ and, therefore, } \theta_1 = \theta_2$ Thus, the path for which the time of travel is least is the one for which the angle	(2-18)





Angle of Incidence & Angle of Refraction


The construction in Figure 2-13 is essentially the same as in Figure 2-11, except here we deal with refracted rays. When ray 1 arrives at point A, it creates a disturbance in the material with velocity V_2 . The disturbance spreads outward in this layer and will travel a distance d_d during the time t₁ it takes ray 3 to travel from point X to point Y (a distance d). We construct the position of the new wavefront at the moment ray 3 arrives at Y by drawing a line connecting Y and B (which is the tangent to the wavelet with radius d_2 that was generated at A). Because

$$\begin{split} \sin\theta_2 &= \frac{d_2}{AY} \quad \text{and} \quad \sin\theta_1 &= \frac{d_1}{AY} \tag{2-19} \\ d_1 &= t_1V_1 \quad \text{and} \quad d_2 &= t_1V_2 \tag{2-20} \\ \text{it holds that} \\ AY &= \frac{t_1V_1}{\sin\theta_1} &= \frac{t_1V_2}{\sin\theta_2} \quad \text{and} \quad \frac{\sin\theta_1}{\sin\theta_2} &= \frac{V_1}{V_2} \tag{2-21} \end{split}$$

